## Effect of prolonged hypokinesia on thiamine phosphoric esters content in rat myocardium

L. Cheresharov, Y. Lazarov, O. Bohorov and S. Toshkova

Central Laboratory of Brain Research, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. I, 1113 Sofia (Bulgaria), and Department of Physiology, Institute of Animal Breeding, 2232 Kostinbrod (Bulgaria), 27 February 1981

Summary. Under the effect of prolonged immobilization, the content of thiaminemono-, thiaminedi- and thiaminetriphosphate in rat myocardium decreases.

Prolonged hypokinesia leads to considerable functional as well as morphological changes in different organs and systems: tahicardia<sup>1</sup>, reduced synthesis of tissue proteins<sup>2</sup> etc. Essential changes are evident in myocardium metabolism too, as for example, reduction in enzyme activity of adenosinetriphosphatase<sup>3</sup>, free amino acids concentration changes<sup>4</sup>, the activity of system adenylate cyclase - cyclic adenosinemonophosphate changes<sup>5</sup>, etc. Thiamine and its phosphates are involved in synaptic transmission<sup>6</sup> as well as in heart function<sup>7,8</sup>. To account for the importance of this vitamin and its phosphate esters in the normal course of certain metabolic processes in the organism, we set ourselves the task of investigating the effect of prolonged hypokinesia on their content in rat myocardium.

Materials and methods. Male Wistar albino rats  $60 \pm 2$  days old at the beginning of the experiment were used. They were divided into 2 groups: 10 rats were immobilized and 7 served as controls. The rats of the 1st group were housed in individual cages for physiological immobilization and the rats of the control group in standard plastic cages. All animals were given food and water ad libitum. After 395 days of immobilization the rats, including the controls, were decapitated under light ether anesthesia. The myocardium was homogenized at 0 °C and the homogenate was treated several times with cold 5% (w/v) NaON and the supernatant was treated with 40% (w/v) NaOH and was then run through a carbon and cellulose column. Thiamine monophosphate (TMP), thiamine diphosphate (TDP) and thiamine triphosphate (TTP) was separated by the method of Rindi and de Giuseppe<sup>10</sup> and the measurements were carried out on a Specol photometer (Zeiss, Jena, GDR) with a fluorimetric (FK) attachment. The data were assessed for statistical significance using Student's t-test.

Results and discussion. The data for the myocardium content of TMP, TDP and TTP for the immobilized and control groups are presented in the table. They show that prolonged hypokinesia causes severe disturbances in the metabolism of these thiamine esters in the myocardium. Their content in the immobilized animals significantly decreases compared with the controls (p < 0.001).

The current concepts of the physiological role of TMP in the organism are contradictory. Some authors doubt the biological importance of this compound but others, like Lukashik11, have shown that it participates in the early stages of carbohydrate metabolism. The present results indicate that its level is approximately 3.5 times lower after hypokinesia than that in the controls. Thus it may be suggested that due to prolonged suppression of motor activity in the organism and particularly in the myocardium, distur-

Content of thiamine phosphoric esters (TMP, TDP and TTP) in the myocardium of immobilized and control rats (µg/g fresh tissue)

| Animals   | No.<br>group | ТМР         | TDP           | TTP           |
|-----------|--------------|-------------|---------------|---------------|
| Control   | 7            | 0.830±0.03  | 2.813 ± 0.08  | 0.248 ± 0.02  |
| Immobiliz | ed 10        | 0.241±0.02* | 1.556 ± 0.08* | 0.093 ± 0.06* |

<sup>\*</sup> p < 0.001. The values are expressed as the mean  $\pm$  SEM.

bances occur in carbohydrate metabolism, the carbohydrates being one of the basic energetic sources of muscle contraction. TDP participates as a coenzime in above 24 enzyme systems in the organism<sup>12</sup> and in this connection its marked decrease in the myocardium after prolonged hypokinesia is of particular interest. It can be assumed that this is an after-effect of immobilization whereby the thiamine pyrophosphokinase (EC 2.7.6.2) activity decreases. This is the enzyme which by participating of adenosine triphosphate and in the presence of Mg<sup>++</sup> forms TDP. This suggestion is supported by our earlier investigations in which we found out that the activity of different enzymes was decreased both in tissues and organs as a result of immobilization<sup>13</sup>. TTP biological function is not yet completely elucidated14. It is suggested that this compound is the active neurophysiological form of thiamine 15 and is related to the normal functioning of the heart 16. The present experiments have demonstrated that the TTP content in the myocardium of immobilized animals significantly (with 62%) decreases compared with the controls. The finding could be explained by the data of Prohaska et al.<sup>17</sup> who state that under conditions of limited motor activity the phosphorylation level in the myocardium is lowered due to the lack of coordination between oxidation and phosphorylation processes. The present results support our earlier findings that immobilization strongly decrease thiamine absorption as well as its content in the mucosa of the small intestine 18.

- L.E. Lamb, Cardiologia 48, 118 (1966). V.F. Makeeva, G.S. Komolova, L.V. Serova, E.V. Belikova and I.A. Egorov, Kosmicheskaja bil. med. 3, 14 (1976), in Rus-
- M.S. Gaevskaja, N.A. Veresotskaja, N.S. Kolganova, E.V. Kolchina, L.M. Kurkina and E.A. Nosova, Kosmicheskaja bil. med. 5, 37 (1976), in Russian.
- G.G. Revich, N.P. Rassolova and V.A. Zaharchenko, Kosmi-
- cheskaja bil. med. 4, 31 (1975), in Russian. G.I. Dorofeev, L.A. Kojemiakin and V.T. Ivashkin, in: Ziklicheskie nukleotidi i adaptazia organisma, p. 122. Ed. A.M. Ugolev. Nauka, Leningrad 1979, in Russian.
- L. Eder, L. Hirt and Y. Dunant, Nature 264, 186 (1976).
- C.J. Gubler, J. Vitam. 15, 346 (1969)
- D.J.B. Sutherland, A.W. Jaussi and C.J. Gubler, J. nutr. Sci. Vitam. 20, 35 (1974).
- P. Penchev, L. Cheresharov and D. Ionkov, Bull. Inst. Physiol. Bulg. Acad. Sci. 13, 303 (1970).
- G. Rindi and L. de Giuseppe, Biochem. J. 78, 602 (1961).
- N.K. Lukashik, Dissertation, Grodno 1964, in Russian.
- H.E. Sauberlich, Am. J. clin. Nutr. 20, 528 (1967)
- L. Venkov, L. Cheresharov and A. Angelov, Struct. Funct. Brain 1, 137 (1976), in Bulgarian.
- R.L. Barchi, in: Thiamine, p. 195. Eds C.J. Gubler, M. Fuji-
- wara and P. M. Dreyfus. Wiley, New York 1976. J. H. Pincus, Y. Itokawa and J. R. Cooper, Neurology 19, 841 15 (1969)
- A.A. Ribina, Ju.M. Parhomenko and T.Ju. Chkusovski, Vita-16
- mini 7, 74 (1974), in Russian. I. Prohaska, I.V. Havkina, and Z.I. Borbosheva, Fiziol. J. USSR 8, 1237 (1973), in Russian.
- Y. Lazarov, L. Cheresharov and S. Toshkova, Jivotnovadni nauki 14, 100 (1977), in Bulgarian.